CONTROLLING SURFACE PROPERTIES OF METAL OXIDE TO IMPROVE SOLAR CELL EFFICIENCY

Rosalynn Quiñones

Department of Chemistry

Marshall University

Monday, June 20, 16

Renewable Energy in West Virginia

Self-Assembled Monolayers

- A Self-Assembled Monolayer (SAM) is a monomolecular film of an organic compound on a solid surface
- SAMs exhibit
 - High degree of orientation
 - Molecular order
 - Close packing
- Self-Assembled Monolayers are flexible because the head or tail groups can be varied
- SAMs have been able to control corrosion.

SAM Formation

- There are two types of films: ordered and disordered
 - Ordered-C-C chains have all-trans conformations
 - Disordered-C-C chains have some gauche conformations
- A long alkyl chain, greater than 12 carbons, is commonly used in SAMs
 - Longer chain lengths tend to form all- trans conformations in the alkyl chain
- Several factors affect the formation and packing density of monolayers
 - Nature and roughness of substrate
 - Head group
 - Tail group
 - Solution concentration

Film Deposition Method

- SAMs provide one of the easiest ways to efficiently obtain closed packed films
 - Small Concentration of the solute
 - Easy deposition methods

http://marvin1.pc.ruhr-uni-bochum.de/

Self-Assembled Monolayer Applications

- Corrosion barrier
 - Biomaterial
- Pharmaceutical applications
 - Polymorph
- Solar cells
 - Work function

Solar Cells

- The most common solar cells are made of silicon
 - 20% energy efficiency
 - Expensive
- Research in solar cells
 - Organic/polymer based solar cells
 - Dye sensitized solar cells
 - Lightweight
 - low-cost
 - Large area processability

cnx.org

Heterojunction Solar Cells

Heterojunction Solar Cells

- Organic photovoltaic cells are great interest of scientists
 - Low-cost generation
 - Easy processability
 - Alternative to high cost silicon based solar cells
- Polymer solar cells
 - Large scale production
 - Flexibility
 - Low-temperature operation
- Performances of organic solar cells are highly dependent of:
 - Morphology of active layers
 - Metal oxide layers
- Inverted-type bulk heterojunction solar cells can be fabricated using different ZnO interlayers
 - investigate the performances
 - Energy efficiencies

Appl. Phys. Lett. 92, 193313 (2008)

Zinc Oxide Nanoparticles

- Useful properties of zinc oxide (ZnO):
 - Wide band gap semiconductivity (~3.3 eV)
 - High electron mobility
 - Stable hexagonal wurtzite structure
- Applications in solar cells, energy-saving windows, antimicrobial textiles, chemical sensors, ultraviolet (UV) coatings, and corrosiveresistant coatings

Project Goal

- Zinc oxide nanoparticles were modified with SAMs
 - Phosphonic acids
 - Spectroscopy characterization
 - Work function tuning

---100 µm

Organic Acids

Phosphonic Acid

- More stable on many metal oxide surfaces
- Octadecylphosphonic acid (ODPA)

Methyl-terminated

- 16 phosphonohexadecanoic acid (COOH-PA)
 - Carboxylic acid-terminated

- (12-phosphonododecyl)phosphonic acid (Di-PA)
 - Phosphonic acid-terminated

Thin Film Formation

- Nanoparticles: 0.35 g ZnO (100 nm size averaged) was dissolved in 30 mL tetrahydrofuran (THF) and sonicated
- Organic acids: 0.09, 0.045, 0.02, 0.01 mmol of each acid was dissolved in THF and sonicated
- Solutions were combined and further sonicated
- Left stirring at room temperature for 24 hours
- After modification, samples were rinsed, sonicated in THF for 20 minutes, and filtered

Chemisorbed Phosphonic Acid Monolayers on ZnO Surface

Stable – resilient to solvent rinses and sonication

COOH-PA after deposition on the surface

PXRD: Presence of Organic Materials

Scanning Electron Microscope (SEM)

Modifications	Average Particle Size (nm)	Particle Distribution (±nm)
ZnO	106	27
ZnO – ODPA	145	53
ZnO – COOH-PA	161	61
ZnO – Di-PA	194	83

0.01 mmol ZnO-ODPA 0.045 mmol ZnO-ODPA

100 μm

31P SS-NMR: Bonding

³¹P chemical shifts of headgroups reflect nature of surface attachment

- Control: 31 ppm
- Attached: multiple broad peaks from 22-35.9 ppm
- Shift: chemical bond between acid monolayer and nanoparticle surface
 - Upfield shift is associated with the chemically bonded phosphonic acid film with the ZnO surfaces
 - 0.01 and 0.02 mmmoltridentate preference
- Broadening: distribution of binding sites
- Increased number of peaks: different types of surface bonds and binding sites on ZnO surface

Energy-level diagrams of Metal/Organic Interfaces with metal work functions

Adv. Mater, 2005, 17, (5), 621-625

Ultraviolet Photoelectron Spectroscopy (UPS)

Modifications	Work function (Φ ± 0.1 eV)
ZnO	4.4
0.010 mmol ZnO – ODPA	3.3
0.020 mmol ZnO – ODPA	3.9
0.045 mmol ZnO – ODPA	4.0
0.090 mmol ZnO – ODPA	4.4
0.020 mmol ZnO – COOH-PA	5.4
0.045 mmol ZnO – COOH-PA	5.6
0.020 mmol ZnO – Di-PA	5.6
0.045 mmol ZnO – Di-PA	5.9

- Hole-injection and electron-injection barriers are linearly dependent on an electrode's work function.
- Surface potential is directly proportional to the effective work function
- Organic molecules anchored on metal or oxide surfaces can produce a permanent dipole moment at the interface
- Methyl-terminated modified samples work function ranges from 3.4 to 5.4 eV depending of surface coverage and film thickness

Conclusions

- Confirmation and characterization via IR, SEM, PXRD, and SS-NMR
 - Organic acids SAMs formed strongly-bound, mostly ordered monolayers that remained attach after various stability tests
 - Thin films were adsorbed on the surfaces through the phosphonate group
- The photoresponsivity is highly desired for photovoltaic applications such as in solar cells
- Treatments of the film surface by coating the ZnO nanoparticles was monitored and characterized by calculating work function for electronic purposes

Future Work

- Modification of ZnO using perfluorinated compounds
- Electrochemical measurements including band gap analysis
- Polymers modifications

Acknowledgements

- Dr. Quiñones Research Group
- The Department of Chemistry, Marshall University
- NASA West Virginia Space Grant Consortium
- MU ADVANCE and MU DOW

THANK YOU FOR YOUR ATTENTION

Questions??