Low-temperature Geothermal Utilization:

Potential for Direct-Use Applications in West Virginia

West Virginia Renewable Energy Conference June 5, 2014 Brian J. Anderson Coordinator of Strategic Research in Energy GE Plastics Materials Engineering Professor Department of Chemical Engineering West Virginia University

What is Geothermal?

Geothermal Heat Pumps/ Ground Source Heat Pumps	Use relatively constant temperature of the earth as heat sink/source for commercial/residentia I heating and cooling	 Near ambient temperatures (~40-80°F) Shallow depths - trenches to wells hundreds of feet deep
Direct Use Geothermal	Use thermal energy (heat) from the earth directly for heating/cooling buildings, greenhouses, aquaculture, pools, spas, etc.	 Moderate temperatures (100-300°F) Wells hundreds to thousands of feet deep
Geothermal Power (Electricity Generation)	Use thermal energy (heat) from the earth to generate electricity	 High temperatures (>300°F) Wells hundreds to thousands of feet deep Baseload generation

HIM ALL

2

GEOTHERMAL OPPORTUNITIES

	Current	Emerging	
	Conventional		Unconventional
	Hydrothermal Resources	Low-Temperature and Direct Use Resources	Enhanced Geothermal Systems
Potential	10's of GWe (Gigawatt electric)	100's MWe – GWe, Huge (~100's GWt) thermal potential	100's of GWe
Key Challenges	Exploration, Permitting, Financing	Education, Infrastructure, Demonstration and Scale Up	Reservoir Creation, Drilling, Scale Up, Reservoir Management
Strategies	Identify New Sites, Promote Sector Growth	Utilize Waste Heat, Promote Distributed Energy, Engage O&G	Expand Existing Fields, Develop Replicable Site

Typical Geothermal Power Plant

Hot fluid (water, steam, or both) produced from wells drilled into ground

Fluid (usually) reinjected back into ground

Historic Generation and Capacity

- U.S. installed capacity: 3,187 MW (4/2013), the largest in world
- Installed US geothermal power capacity grew 5% in 2012, 147 MW in new capacity added and 175 additional projects under development

Current Installed and Planned Capacity

Department of Chemical Engineering

Geothermal Power - Advantages

- Renewable/Low-Carbon Intensity
- Baseload 24/7 operation

Photos Courtesy James Faulds, NBMG

U.S. Geothermal Resource Potential

Increasing Challenge

Hydrothermal Plant - "Typical" Cost Breakdown

- Installed capital cost: \$4,000-\$6,000/kW
- LCOE: 6-12 cents/kWh
- Capital costs mostly split between drilling and power plant
- Exploration costs relatively small

Adapted From ESMAP, 2012 Geothermal handbook: Planning and Financing Power Generation

Development Risk

"Typical" exploration phases for one successful hydrothermal project

Development Risk

Adapted from ESMAP, 2012 Geothermal Handbook: Planning and Financing Power Generation

Department of Chemical Engineering

Renewable Energy Incentives

- Most incentives (ex., PTC/ITC) have short time frames
- Incentive time frames don't address long development time frames for geothermal (5-7 years)
- Incentives don't address riskiest portion of geothermal development – exploration (including exploration drilling and confirmation drilling)

Impact of PTC Expiration on Annual U.S. Wind Installations

Enhanced Geothermal Systems (EGS)

- Such systems require increasing permeability by stimulating fracturing and shearing of fractures through fluid injection
- Fluid circulated between injection and production wells to capture and extract heat

High Potential Impact of EGS

U.S. Geothermal Resource Potential

Increasing Challenge

EGS Resources – Where can they be developed?

Key aspects of geothermal systems

- Elevated temperature
- Permeable flow pathways
- Benign fluid to extract heat

Key EGS challenges

- Reservoir access (drilling)
- Reservoir characterization (subsurface imaging)
- Reservoir creation (stimulation)

EGS Field Observatory Creating and Optimizing Reservoirs

• Faster, More Efficient Drilling Technologies

2 **Advanced Downhole R&D** 6,000 - 12,000 ft **3 4** Measurement /Assessment Tools 3 2,000 - 6,000 ft.

5

00 – 6,000 ft.

Seismic Modeling, Monitoring & Protocols

Addressing Barriers:

- High Cost of Drilling
- Subsurface Characterization
- Creating a Reservoir
- Sustained Reservoir Production
- Risk Management & Mitigation

Resource Potential - Summary

Resource Potential – Co-Produced

Increasing Challenge

Resource Potential - Geopressured

Increasing Challenge

Need for Energy at Low Temperature

U.S. thermal energy demand from 0-260°C (with electrical system losses)

The thermal spectrum of low-temperature energy use in the United States, Fox et al., *Energy and Environmental Science*, 2011

0

Direct-Use Energy Brief

- Piping networks deliver heating or cooling streams to consumers
- 1st gen District Heating (DH): steam
- 2nd and 3rd gen DH: hot water
- 4th gen DH: low temperature fluid, ~55°C
- 4th gen DH enable penetration of renewable sources
- Higher utilization efficiencies than electricity production

District Energy Systems in the US

- Over 800 district energy systems in the United States
- Operating in the US for over 100 years
- Serving more than 4.3 billion ft² of building space

Resource Potential – Low-T

Increasing Challenge

Direct Use Geothermal Worldwide

Direct-Use Geothermal Usage in the US

U.S. Geothermal district heating systems (from Richter, 2007)

Geothermal direct-use in the U.S. 2004 (data from Lund, 2005)

Fish Farming 22%

Boise, ID

- Largest of 17 US geothermal district heating systems
- First system installed in 1892
- Four systems currently operating
 - Boise Public Works downtown core area
 - 170°F (77°C), 65 customers, 1.8 million ft² including: City Hall, Ada County Courthouse, Idaho Water Center, Boise High School and YMCA
 - State of Idaho State Capital and Capital Mall complex
 - 165°F (74°C), 9 buildings in the Capitol Mall complex, including the State Capitol (Neely, 1994). Currently, the system is used to heat about 1.5 million ft²
 - Veterans Administration VA campus
 - 400,000 ft² in 22 buildings on the VA grounds
 - Boise Warm Springs Water District residential hot water
 - 176°F (80°C), Original system installed in 1892

Geothermal Potential near Boise, ID

27

Geothermal Potential in the East

Department of Chemical Engineering

Targets of Opportunity for Direct Use in West Virginia

WVU Case Study

AspenPlus models of the heating distribution system and absorption chilling system constructed and analyzed.

He, X., Anderson, B.J., "Low-Temperature Geothermal Resources for District Heating: An Energy-Economic Model of West Virginia University Case Study," SGW, 2012, SGP-TR-194

Case	Heating (MW _{tb})	Cooling (MW _{tb})	Levelized Energy Cost (\$/MMBtu _{th})
1	16.24	9.93	11.70~12.72
2	16.24	9.93	8.46~9.50
3	16.08	9.93	5.30~6.37

Case 1: Full costs, complete retrofit, no tax breaks

Case 2: Public entity bond rates, tax incentives

Case 3: Lower retrofit costs, using hot water not steam

CO₂ Geothermal Overview

- CO₂ stored in deep geothermal reservoirs may have many advantages over other alternatives for CO₂ sequestration, such as
 - shallow saline aquifers
 - coal seams
 - depleted oil and gas reservoirs
- The energy produced from the geothermal system will help offset the parasitic losses associated with CO₂ capture, separation, and pressurization requirements for both power generation and fuel processing operations

However, there are many fundamental science issues to be overcome

Geothermal Combined Heat and Power

- Unterhaching geothermal plant near Munich, Germany
 - Located in the Bavarian Molasse Basin (similar geologic setting as the Eastern US)

Kalina plant

- Low-temperature (122°C) production of heat and electricity
- Heating 5,000 households
- 2 wells (3.3 and 3.4 km) resulting in 38 $\mathrm{MW}_{\mathrm{th}}$

Resource Potential – Direct-Use

Low-Temperature, Co-Produced, and Geopressured Geothermal are National Resources

- Temperature sufficient in many parts of the country to supply direct-use heating and cooling
- Direct-use geothermal extends the economically recoverable envelope by allowing for lower-temperature utilization

SUMMARY

- Geothermal resources could supply 5-10% of U.S. demand
 - Geographically diverse
- EGS and direct use of geothermal energy can expand geothermal development throughout the country
- Improved ability to find new resources is critical to lowering risk
- Long development timelines are a reality, but so is long and reliable baseload energy production
- Opportunities in leveraging oil and gas technologies and infrastructure
- Geoscience has a pivotal role to play in finding, developing, and responsibly using these resources

Thank you

