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e Biofuels research justification
— Why do we need biofuels?

e Algal biodiesel
— TAGs

e Research projects

— Photomixotrophically grown algae
— Using glycerol to increase algal biodiesel yields
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Biofuels
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Tidal power
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Biofuel Footprint

Comparison of Potential Corn, Cellulose, and
Aquatic Microbial Fuel Production
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Available Biomass

Biomass Resources Available in the United States
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Fig. 2. A tubular photobioreactor with parallel run horizontal tubes.
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Harvest <

Algal Biofuel

Fig. 5. Microalgal biomass recovered from the culture broth by

(www.cyanotech.com), Hawaii,

filtration moves along a conveyor belt at Cyanotech Corporation

USA. Photograph by Temry Luke.

Courtesy of Honolulu Star-Bulletin.
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MARSHALL Algal Biofuel

Crop Oil content per tonne of biomass (wt% dry mass) Qil production (t/ha/y) Biodiesel yield (L/ha/y)
Oilseed | (UK) [2] 40-44% (of seed) 1.4 1560

Soya [1°°] 20% (of seed) 0.48 544

Jatropha [45] 30% (of seed) 2.4 2700

Chlorella vulgaris [26] Up to 46% 7.28 8200
Nannochloropsis [12°] Up to 50% 20-308 23 000-34 000
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Comparison of lipid accumulation in
photomixotrophically and heterotrophically
grown Chlorella vulgaris

NIES-642 Chlorella vulgaris var. vulgaris
g g




Measured:
-[Chl a] -turbidity
-dry weight -lipid dry weight




MARSHALL
UNIVERSITY.

Cell Density,s0,m
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Dry Weight Growth Curves and Corresponding Dry Lipid Weights
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C 16: palmitic acid
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Findings

 Photomixotrophically grown cells produce 2X as
many lipids as do heterotrophically grown cells

e This increased to 5X under N deprivation (50 %)

e Photomixotrophically grown cells reach
stationary phase and higher biomass sooner

e Cyclic electron transfer

e Cells produce palmitic, stearic, oleic, and linoleic
acids
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Using glycerol to maximize lipid production in
Chilorella vulgaris

Derrick R. J. Kolling
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Working hypothesis: Increased glycerol availability
will increase the production of TAGs in C. vulgaris
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Extracellular matrix
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Stationary phase cells were
exchanged into control or N-
deplete medium that
contained 1% glycerol
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Figure 2: Growth of Chlorella vulgaris in CV+ medium with and
without nitrogen and glycerol
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Figure 3: [Chl a] vs time for cultures of Chlorella vulgaris in CV+
medium with and without nitrogen and glycerol
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Findings

 N-deprived cells accumulated ~%50 biomass of control

e %20 of biomass in N-deprived cells was lipids vs. %15 in
the control
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MARSHALL OEC Photoassembly
Application

Bioinspired/biomimicked System Artificial Leaf
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wwwa3.imperial.ac.uk

www.ruhr-uni-bochum.de/h2design/profile/main.html
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