

Enhancing Algal Biodiesel Through the Use of Waste Products

Derrick R. J. Kolling Department of Chemistry

Renewable Energy in West Virginia June 5, 2014

- Biofuels research justification
 - Why do we need biofuels?
- Algal biodiesel
 - TAGs
- Research projects
 - Photomixotrophically grown algae
 - Using glycerol to increase algal biodiesel yields

Biofuels Solar power Wind power Tidal power Hydropower Geothermal

Biofuel Footprint

Dismukes et al. (2008)

Available Biomass

Algal Biofuel

Algal Biofuel

Fig. 2. A tubular photobioreactor with parallel run horizontal tubes.

Fig. 5. Microalgal biomass recovered from the culture broth by filtration moves along a conveyor belt at Cyanotech Corporation (www.cyanotech.com), Hawaii, USA. Photograph by Terry Luke. Courtesy of Honolulu Star-Bulletin.

Fig. B1. Transesterification of oil to biodiesel. R_{1-3} are hydrocarbon groups.

Crop	Oil content per tonne of biomass (wt% dry mass)	Oil production (t/ha/y)	Biodiesel yield (L/ha/y)
Oilseed (UK) [2]	40–44% (of seed)	1.4	1560
Soya [1**]	20% (of seed)	0.48	544
Jatropha [45]	30% (of seed)	2.4	2700
Chlorella vulgaris [26]	Up to 46%	7.2 [§]	8200
Nannochloropsis [12•]	Up to 50%	20–30 [§]	23 000–34 000

Scott et al. (2010) Current Opinion in Biotechnology

Comparison of lipid accumulation in photomixotrophically and heterotrophically grown *Chlorella vulgaris*

Measured: -[Chl *a*] -turbidity -dry weight -lipid dry weight

C 16: palmitic acid

- C 18: stearic acid
- C 18:1(n-9): oleic acid
- C 18:2(n-6): linoleic acid

- Photomixotrophically grown cells produce 2X as many lipids as do heterotrophically grown cells
 - This increased to 5X under N deprivation (50 %)
- Photomixotrophically grown cells reach stationary phase and higher biomass sooner
 - Cyclic electron transfer
- Cells produce palmitic, stearic, oleic, and linoleic acids

Using glycerol to maximize lipid production in *Chlorella vulgaris*

<u>Working hypothesis</u>: Increased glycerol availability will increase the production of TAGs in *C. vulgaris*

Scott et al. (2010) Current Opinion in Biotechnology

Radakovits, et al. Eukaryotic Cell

Stationary phase cells were exchanged into control or Ndeplete medium that contained 1% glycerol

Derrick R. J. Kolling June 5, 2014

Findings

- N-deprived cells accumulated ~%50 biomass of control
- %20 of biomass in N-deprived cells was lipids vs. %15 in the control

Acknowledgements

• Algal biodiesel

-Ben Woodworth, Tony Stephenson, Rebecca Mead, Courtney Nichols, Morgan Stickler, Kasey Stickler, Mallory McDonald, Aaron Holland

OEC photoassembly

-James Board, Hope Cook, Ben Blodgett, Matt Thompson, Shane Kagen, Chase Turner, Ben Weiner, Justin Erwin, Jordan Hilgeford

• Bioethanol from invasive algal species -Kevin Militello, Shaheed Elhamdani

West Virginia Higher Education Policy Commission

Funding

Research Tools

STE Hash humbe

• GC-MS

• Electron Paramagnetic Resonance

Derrick R. J. Kolling June 5, 2014

OEC Photoassembly Application

Bioinspired/biomimicked System

Artificial Leaf

www3.imperial.ac.uk

www.ruhr-uni-bochum.de/h2design/profile/main.html

